

VISUALIZING ATTENTION IN VISION TRANSFORMERS Aayush Agrawal, Finn Dayton, Elliot Dauber

Introduction

- > Vision Transformers (ViT) have become comparable to Convolutional Neural Networks (CNNs) in performance.
- The central component of a ViT is Multi-headed \succ **Self-Attention**, but the inner workings of attention are intricate and not fully understood.
- We present a **novel approach** for **visualizing attention** \succ using "saliency maps" to identify patterns and correlations that can improve ViT design choices and enhance the understanding of ViTs.
- We operate in a data sparse environment to contrast the robustness of different model architectures.

Problem Statement

Our problem is **image classification**. The inputs are 64x64 images and the outputs are class labels. We use the conventional quantitative metrics of accuracy, recall, precision, F1 Score and AUC ROC. Additionally, we introduce a novel quantitative metric, "Saliency-map Mask Metric" (SMM), explained in "Methods."

Dataset

- We use the **Tiny Imagenet** dataset with 10 classes sampled out of 1000.
- Only 500 images per class for training, and 100 per class for testing.
- The dataset contains challenging classes that are visually similar, making classification and visualizations more interesting.

Methods

We first implemented a ViT from scratch

Input Image

Architecture Modifications

To **visualize attention**, we combine the We then trained a *series* of models on our self-attention matrices then multiply by the dataset, making one architectural change from a gradient of the intended class. We then baseline for each model. The **six architectural** changes are as follows: produce a heat map of the resulting matrix:

Starting ViT Architecture

- 1. Positional Encoding ∈ {Sin/Cos, Learned, Integer}
- 2. # Encoder Blocks ∈ {1, 2, 4, 8}
- # Attention Heads ∈ {1, 2, 4, 8}
- Size of Hidden Dim ∈ {4, 8, 16, 32} 4
- 5. Presence of Residual Connection \subseteq {**Yes** No}
- 6. Presence of Layernorm \subseteq {**Yes** / No} *The baseline model choices are **bolded**

Computer Science, Stanford University

Results and Analysis

Architecture	Train Acc	Test Acc	Recall	Prec	F1 Score	ROC AUC	SMM
Baseline	0.476	0.328	0.317	0.367	0.312	0.766	0.025
Pos-Enc: Learned	0.536	0.390	0.365	0.384	0.376	0.802	0.065
Pos-Enc: Integer	0.476	0.318	0.302	0.325	0.304	0.769	0.026
Encoder Blocks: 1	0.429	0.336	0.332	0.348	0.325	0.747	0.009
Encoder Blocks: 2	0.475	0.320	0.309	0.323	0.306	0.751	0.039
Encoder Blocks: 8	0.374	0.310	0.309	0.279	0.280	0.739	0.017
Attention Heads: 1	0.475	0.352	0.341	0.337	0.324	0.771	0.041
Attention Heads: 2	0.460	0.372	0.370	0.348	0.335	0.771	0.001
Attention Heads: 8	0.523	0.340	0.321	0.373	0.337	0.777	0.029
Hid-Dem: 4	0.388	0.346	0.342	0.311	0.310	0.735	0.021
Hid-Dem: 16	0.510	0.374	0.369	0.356	0.348	0.789	0.026
Hid-Dem: 32	0.100	0.100	0.100	0.010	0.018	0.502	0.017
No Residuals	0.100	0.100	0.100	0.010	0.018	0.500	0.297
No Layernorm	0.100	0.100	0.100	0.010	0.018	0.500	0.482

2 Attn. Heads

- \succ
- marginal effect on performance.
- \succ
- Residuals + Layernorm are absolutely critical! \succ
- \succ images).

Conclusion + Future Work

- easily quantified with our novel SMM metric.
- \succ parts of the ViT.
- \succ in this new data regime?

Attention Visualization

SMM, a Novel Metric!

Saliency-map Mask Metric (SMM) quantitatively analyzes a saliency map by comparing it with an object instance segmentation mask (Fast R-CNN) to measure the **overlap** of the expected object and attended areas. The result is 0.0 - 1.0.

SMM Score

Salience Map

Experiment Results

Hidden Dim: **16** Hidden Dim: **32**

Attention Visualizations

Learned Positional Encodings created the **biggest gain**.

The number of encoding blocks and attention heads had

Changing the hidden dim size drastically affected performance.

The SMM metric tends to be higher for the **worse models**

(successful models focus on small, differentiating details in

> Better models focused on **fewer, smaller details** of the fish In the future, we hope to run more ablations on different

We are also interested in collecting 10-100x more training images and re-running all experiments in this non-sparse environment. Do the optimal model configurations change