
An End-To-End Pipeline for Pose Estimation in Mobile Applications Using
Kalman Filtering

Finn Dayton
Department of Computer Science

Stanford University
finniusd@stanford.edu

JD Kelly
Department of Electrical Engineering

Stanford University
jdkelly@stanford.edu

Eric Werner
Department of Computer Science

Stanford University
ewern@stanford.edu

Abstract

Pose estimation is a well-studied problem, but running
an advanced model on a local device or desktop can have
unsatisfying results. Speed is the main issue. In this paper,
we investigated using three different models for an end-to-
end pipeline application that starts on a phone, goes to a
cloud computer running a Flask server to run the model,
which sends the results back to the device. We addition-
ally investigated using denoising and a Kalman Filter and
report the results. We demonstrate that a successful end-
to-end application is feasible if certain device and internet
speed latencies are considered.

1. Introduction
Pose estimation is a fundamental task in computer

vision that involves estimating the pose or position of an
object or human body in a given image or video. Accurate
pose estimation is essential in various applications such
as robotics, autonomous vehicles, augmented reality, and
human-computer interaction. The goal of pose estimation
is to estimate the 3D coordinates of key points or joints
on the object or body, which can then be used to infer
the pose or motion. Pose estimation has been extensively
studied over the past few decades, with significant progress
achieved due to the availability of large-scale datasets,
advances in deep learning, and the development of more
sophisticated algorithms.

Before the Deep Learning era, pose estimation was

presented as a tree-structured or graphical model problem
that predicted keypoint locations based on hand-crafted
features [2]. Since the popularization of convolutional deep
neural networks, however, results on virtually all datasets
has reached new SOTA performance [11] [14].

We investigated three models. First, was the model
we presented in our baseline based on [14]. The second
was a Pytorch model based on imported ResNet18 weights.
The third model is based off [6]. The most advanced of
the three, it is a combination of MobileNet V2 [12] and
Shufflenet v2 [10]. All three datasets are trained on the
MPII dataset [1]. One of the favorable points of the third
model is MobileNetV2 has 3.91 million parameters and
ShuffleNet V2 has 2.92 million parameters while Resnet18
has 12.26 million parameters. Additionally, MobileNet and
ShuffleNet take up 0.49 and 0.31 Giga flops, respectively,
while Resnet18 takes up 1.64 Gigaflops. For the mobile
application introduced above, a smaller model means lower
latency and thus better user experience. In the results
section, we compare how the models compare in accuracy
of pose prediction.

2. Related Work
Pictorial structures revisited: People detection and

articulated pose estimation 2009 [2], Andriluka et al pro-
poses a pictorial structures framework to pose estimation.
They show that the right selection of components for both
appearance and spatial modeling can lead to SOTA results.
The model does not use a deep learning framework and
instead relies on handcrafted features.

1



In Stacked Hourglass Networks for Human Pose Esti-
mation 2016 [11], Newell et al introduce a convolutional
neural network architecture for pose estimation. Features of
an input images are fed into a neural network architecture
that uses a successive steps of pooling and upsampling to
achieve SOTA results.

Cascaded Pyramid Network for Multi-Person Pose
Estimation 2018 [5] Chen et al introduced a improved
architecture over the hourglass model. Unlike the refine-
ment strategy like stacked hourglass, it concatenates all the
pyramid features rather than simply using the upsampled
features at the end of hourglass module. The model
achieved new SOTA performance.

In Simple Baselines for Human Pose Estimation and
Tracking 2018 [14], Xiao et al, propose a simpler architec-
ture than either Stacked Hourglass or CPN. The authors use
a few deconvolutional layers added on a backbone ResNet-
152 and a mask R-CNN [7] over the last convolutional
stage. This combined with basic optical flow produced
SOTA results for a model much simpler than the prior two.
We chose to based our first model on this, and this is what
we presented in our project milestone.

There have been several studies on denoising algo-
rithms for images. In Fast Non-Local Algorithm For Image
Denoising 2009 by Karnati et al. [8] present improvements
to Non-Local Means (NLM) image denoising. Their
technique uses modified multi-resolution based approach
with much fewer comparison than the original Baudes
NLM algorithm [4], making the result nearly 80 times
faster. We use denoising in all three of our models.

MobileNetV2: Inverted Residuals and Linear Bottle-
necks 2019 by Sandler et al [6] introduces an improved
mobile model for object detection. Mobile models are
lighter weight models meant to be run on devices with
limited compute, e.g., mobile phones. This is exactly our
use case. For comparison, MobileNetV2 has 2.11 million
parameters versus ResNet101’s 58.16 million parameters.
They demonstrated MobileNetV2 outperforms state-of-art
realtime detectors on COCO dataset [9], used for pose es-
timation, both in terms of accuracy and model complexity.
With these benefits in mind, we use this network within our
final model.

In ShuffleNet V2: Practical Guidelines for Efficient
CNN Architecture Design 2018 by Ma et al [10], the
authors argue neural network architectures only use
complexity (FLOPs) as the metric for comparing models
with similar performance. The authors argue that what

is needed instead is a measure of model ¬speed. They
provide guidelines for designing models on GPUs and
CPUs and provide a model ShuffleNetV2 which can
process more than double the number of images per
second that MobileNetV2 can on a CPU. We also use the
design recommendations from this paper in our final model.

Lastly, MobileHumanPose: Toward Real-Time 3D
Human Pose Estimation In Mobile Devices 2021 by Choi
et al. [6] introduces a mobile-friendly pose estimation
architecture. Built on a MobileNetV2 backbone. Their
model also incorporates learnings from ShuffleNetV2. It is
seven times smaller than Resnet50 and reduces inference
time to 12.2ms on a Galaxy S20 CPU. We based our final
model on this model but added de-noising and Kalman
filtering on top of it.

3. Model Architecture / Approach
We explore three primary model architectures:

1. Baseline model: Resnet18 + denoising
2. Improved Model: Resnet 18 + denoising
3. Current Model: MobilePose + denoising + KF

As the intended model is expected to run on live camera
feed from mobile phones, we expect the input images to be
noisy. For all models we perform Fast Non-Local Means
denoising to reduce noise in input images. This method
updates pixel values in a image with the mean of similar
patches of pixels in the image to that of the target pixel.
This method is very fast, and thus does not significantly
contribute to compute time. We saw limited performance
gains while testing as the MPII dataset was generally well
processed and free of noise.

We begin with an initial implementation to establish
baseline performance. Our first model was implemented
using Tensorflow. It fine-tuned a ResNet18 base model.
The final fully connected layer was replaced to output 32
regressions which mapped to the x and y values of each of
the 16 annotated joints.

Building on this work, our second model re-implements
a similar architecture in Pytorch, proving more fine con-
trol over the training process and is consistent with the
framework for most leading pose estimation models. We
further increase the size of the fully connected network
to map the ResNet18 image embeddings. Outputs reamin
directly mapped from ResNet embeddings to the 32 labels
consistent with the x and y values of the predicted joints
through dense layers.

In initial efforts we develop our architecture for this task,

2



however, as we discuss, Pose Estimation is a well studied
problem. In future model exploration we fine-tune existing
light weight models for pose estimation. Our latest model is
the MobilePose Model which fine-tunes MobileNetV2 by
replacing the final layer with a fully-connected Conv2d()
layer, which builds a heat map of size (n/4,n/4) by predict-
ing the probability that each 4x4 square of pixels in the
image contains each of the 16 joints. Then, the heatmap
for each joint is used to evaluate the most likely candidate
coordinates for the joint, which are then fed to the next step.

After the 2D-pose estimation, we feed the observed
coordinates (output of fine-tuned mobilenetv2) into a
Kalman filter (KF), with the objective to add fluidity
(smoothing) and accuracy to predictions on videos (tempo-
ral sequences of images).

The KF uses a combination of a prediction step and
an update step. The prediction step allows us to instill our
pose estimation with a dynamical model, and the update
step takes a linear combination of the prediction and the
update based on how confident Mobilenetv2 was.

The KF is an iterative estimation technique which
uses a combination of a prediction step and an update step.
The prediction step allows us to instill our pose estimation
with a dynamical model, and the update step takes a linear
combination of the prediction and the update based on how
confident Mobilenetv2 was. To start, we store our 16 joint
coordinates for a timestep as a vector xt of length 32 (xi

and yi per joint i) xt = [x1, y1, x2, y2, · · · , x16, y16]
T
t .

Our KF stores the current and previous coordinates,xt

and xt−1 in a vector µt. To predict, we multiply a ma-
trix A containing the dynamics model. The dynamics
model assumes no acceleration over the timestep, so
x̂t+1 = xt + (xt − xt−1) = 2xt − xt−1, which means
the dynamics jacobian is At = [−1 ∗ I32, 2 ∗ I32]. Our
covariance is then Σ̂t+1 = AtΣtA

T
t +Qt, where Qt is the

covariance (uncertainty) of the dynamics model.

To output from the KF, we must update our predic-
tions based on the observation zt+1, where the observation
is itself the CNN’s predicted pose. The output xt+1

is a linear combination of the predicted pose and the
observed pose, xt+1 = x̂t+1 + Kt+1(zt − Ct+1x̂t+1),
where Kt+1 is the Kalman gain. The Kalman gain is
Kt+1 = Σ̂t+1C

T
t+1(Ct+1Σ̂t+1C

T
t+1 + Rt+1)

−1. Ct+1

is the observation jacobian, which is just the identity
matrix because the observation is in the same format as the
prediction. Rt+1 ∈ R(32,32) is the covariance(uncertainty)
in the observation.

We tried multiple approaches to the dynamical model

used in the prediction step.

Once we had developed a functional model for pose
estimation from images, we focus on an end-to-end
pipeline for performing and serving pose estimations as
seen in 1. Our intended target is a mobile application. To
increase adaptability of the pipeline we perform develop-
ment in react-native so that the application can run on IOS
and Android devices.

The first stage of the pipeline captures live images
using a native camera library from the mobile phone’s
camera. This image is then sent using a REST API to a
python Flask server hosted on an Heroku Web app.

The Flask server received the API call, pre-processes
the image from the camera, and then feeds it into the pose
estimation model. Estimated pose as an array of the x
and y values for the 16 predicted joints are returned as the
response to the API call. By implementing the model on
cloud infrastructure we are able to use all mobile devices
are able to leverage this approach, and the pipeline can be
updated with the pace of the field to implement state of
the art models as they are developed. Leading research
has been developed with the Pytorch framework which the
current pipeline implements. The cloud infrastructure can
also be easily scaled to improve speed and handle larger
models.

The app then re-scales the estimated joints and draws
the predicted joints over the camera view. This is repeated
as fast as latency and compute limitations will allow to
provide live pose estimation.

Figure 1. Model Diagram

3



4. Experiments
In order to establish baseline performance we train

the initial model. We partition the MPII dataset for 60%
training, 20% validation, and 20% test. Notably, there is
only one fully connected layer after the ResNet18 image
embeddings which map directly to the 32 outputs. We train
with an Alex optimizer, learning rate of 1e-3, and do so for
100 epochs.

In order to improve this model we reimplement a
similar architecture in PyTorch. This provides more control
over training and is consistent with frameworks of learning
models in the field. After iteration on model architecture,
we found the best performance came from deepening the
network after the image embeddings from the ResNet18
base model. We add two additional hidden layers of size
32 and 128 respectively with ReLu activation functions
before the 32 node output layer. Additionally we found
the model converges quickly, and train for fewer epochs to
reduce over-fitting. Using the same testing split we train
with an Alex optimizer, learning rate of 1e-3, and do so for
20 epochs.

After this performance, we choose to implement an
existing pose estimation model to drastically increase
model performance. It is expected to see considerable
performance gains in shifting to a far larger and complex
model than those explored previously. Additionally, we
recognize that the pose estimation task we plan to leverage
the model for is largely based on sequential states for an
individual, we see performance could benefit from smooth-
ing introduced by a Kalman Filter and thus implement one
for the latest model.

In order to improve the pose prediction pipeline, we
conduct further experimentation to increase speed of
prediction.

The first speed bottleneck we identify is the rate at
which the application is able to extract image data from
the live camera feed. As mentioned, the application is
developed in react-native to enable cross-platform use, but
this high level is particularly slow at accessing low level
data. After evaluating several methods, we found imple-
menting native libraries that ran on mobile devices allowed
for significantly faster image acquisition, our application
implements the react-native-vision-camera library which
has native code for cameras on ios and android devices.

Once the image data is extracted we must send the
image to the server with a REST API call. Here we
found we could significantly reduce image quality without
noticeably impacting model performance. This is likely

because the model already resizes images prior to esti-
mation, so reducing quality at source does not lose any
additional information the model would otherwise leverage.

Another valuable area we determine could be used to
improve pipeline speed was the cloud compute resources.
The initial server was hosted on the lowest tier Heroku
server. We tested pipeline speed with different quality
servers to verify this would improve pipeline performance.
We saw this scaled with quality which we find is a very rea-
sonable result. This verifies that this framework can scale
to reduce latency imposed by compute, and is primarily
constrained by network latency.

5. Results
Our initial implementation trained on the MPII test set

achieved a baseline Mean Squared Error of 2178.9. This
translates to a mean pixel distance from annotated points of
11.7 pixels over the 16 predicted joints.

We implement further improvements on the mode as
discussed in our experimentation and similarly train the
new model. The training loss can be seen in Figure 2

Figure 2. Pytorch Model Training

When tested on the test set, the model achieved a Mean
Squared Error of 1569.4. This translates to a mean pixel
distance from annotated points of 9.9 pixels over the 16
predicted joints.

Our last model sees significant performance gains as
we leverage the existing MobilePose Model. The mean
pixel distance from annotated points over the 16 predicted
joints reduced to 0.092. This performance gain is consistent
with expectations of far superior performance. As stated
earlier, our final model uses a heatmap to predict the
keypoints as showin in figures 3 and 4.

4



Figure 3. The input image to the Heatmap

Figure 4. Heatmap Result of the ”head” Keypoint

Furthermore, we recognize the model is intended for
use in sequential predictions. We implement an Kalman
Filter in order to improve predictions for this kind of pose
prediction task. In evaluation, we notice this considerably
improves visual the smoothness of the pose predictions in
the application.

Once implemented we are able to run the full appli-
cation prediction pipeline with server set up. See figures 5
6 and 7.

However, the initial pipeline has significant latency. our
experimentation is able to drastically improve speed of
pose estimation in the application.

Initial image data acquisition time took over 500 mil-
liseconds with high-level react native libraries. However,
implementing the vision camera library that leverages
native code on android and ios devices was able to reduce
acquisition time on our test device (a Pixel 5) to 160
milliseconds.

We further identify that image quality contributed to
image data access time. As our model downsizes input

Figure 5. Front Arms Down

Figure 6. Front Arms Up

images before performing prediction, we are able to
significantly reduce image quality before sending to the
server without impacting performance. Image acquisition
time lowered with image quality to 80 milliseconds where
we did not continue to see speed gains, which suggests
other overhead that block further reductions.

5



Figure 7. Side View

By further addressing compute time by increasing
available Heroku server quality, we are able to achieve a
50 millisecond reduction in model computation time. This
indicates that we can further scale performance with cloud
compute resources. Here the only hard limitation is the
network latency.

Thus the last limitation is the speed of light. While it
is unclear if it is possible to exceed this or not given our
current understanding of elementary physics [13] [3], we
did not consider this for our project. We leave this as an
exercise for the reader.

6. Conclusion

In this paper, we focused on evaluating the strategies for
an end-to-end pose estimation app. We also looked at the
results of implementing and using a Kalman filter. This
demonstrates the potential of combining established ma-
chine learning techniques with filtering algorithms to fur-
ther enhance the performance of pose estimation systems in
heatmap settings. Further research could explore enhancing
the filtering further to include comparing the Kalman filter
with the Unscented Kalman Filter, Particle Filter or Recur-
sive Bayesian Estimation.

7. Code Repositories
Github Repository for heatmap of leftApplication:

https://github.com/jdkelly199/PoseApp

Github Repository for Flask Server:
https://github.com/jdkelly199/PoseServer

Github Repository for MoblePose Model w/ KF:
https://github.com/ewernn/MobilePose

Shared Google Drive with Colab Notebooks and Data:
Link

References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 1
[2] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. Pic-

torial structures revisited: People detection and articulated
pose estimation. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1014–1021, 2009. 1

[3] anonymous. Quantum entanglement communication. 6
[4] A. Buades, B. Coll, and J.-M. Morel. A non-local algo-

rithm for image denoising. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 60–65 vol. 2, 2005. 2

[5] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation, 2018. 2

[6] Sangbum Choi, Seokeon Choi, and Changick Kim. Mobile-
humanpose: Toward real-time 3d human pose estimation in
mobile devices. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 2328–2338, June 2021. 1, 2

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn, 2018. 2

[8] Venkateswarlu Karnati, Mithun Uliyar, and Sumit Dey. Fast
non-local algorithm for image denoising. In 2009 16th IEEE
International Conference on Image Processing (ICIP), pages
3873–3876, 2009. 2

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 2

[10] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design, 2018. 1, 2

[11] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation, 2016. 1, 2

[12] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks, 2019. 1

[13] Ethan Siegel. Even with quantum entanglement, there’s no
faster-than-light communication. 6

[14] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking, 2018. 1, 2

6

https://docs.google.com/presentation/d/1GaAA_yjPdKsnARW5PKTnFAt0Tj9QYIxnTboXq0_4oWk/edit?usp=sharing

	. Introduction
	. Related Work
	. Model Architecture / Approach
	. Experiments
	. Results
	. Conclusion
	. Code Repositories

